Highly Stereoselective Synthesis of $(\boldsymbol{E}, \boldsymbol{E})$-3,7-Dimethyl-2,6-decadiene-1, 10-diol

Zuo Sheng LIU^{1}, Jiong LAN^{1}, Li Zeng PENG ${ }^{1}$, Yu Lin LI^{1} *, Ya Cheng XING ${ }^{2}$, Wen CEN ${ }^{2}$
${ }^{1}$ National Laboratory of Applied Organic Chemistry and Institute of Organic Chemistry, Lanzhou University, Lanzhou 730000
${ }^{2}$ Department of Chemistry, Qingdao University, Qingdao 266071

Abstract: A total synthesis of (E, E)-3,7-dimethyl-2,6-decadiene-1,10-diol, using 1,3-transfor-mation of 2, 3-epoxy alcohol and Claisen rearrangement of allyl vinyl ether as key steps, is described.

Keywords: 2,3-Epoxy alcohol, 1,3-transformation: Claisen rearrangement, synthesis.

The diol $\mathbf{1}^{1}$, a queen butterfly pheromone was isolated from queen butterfly (Danaus gillippus belenice). Syntheses of this compound were reported from the orthoester Claisen rearrangement ${ }^{2}$, the rearrangement of allyl siloxylinyl ether ${ }^{3}$ and the anionic [2,3]-sigmatropic rearrangement of allylic sulfide ${ }^{4}$. In light of their biological interest, it seemed desirable to design a more efficient route to this substance. Thus, we wish to report a short, stereoselective synthesis of $\mathbf{1}$ utilizing the 1 , 3-transformation of 2, 3-epoxy alcohol and the Claisen rearrangement of allyl vinyl ethers. (Scheme1)

Scheme 1

Reagents and conditions: a) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{rt}, 2 \mathrm{~h}, 100 \%$; b) $\mathrm{SeO}_{2}, t-\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $2 \mathrm{~h}, 64 \%$; c) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux, $2 \mathrm{~h}, 90 \%$; d) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}$, pyridine,
$\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(5 / 3), 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then added $1 e q \mathrm{H}_{2} \mathrm{O}, 38^{\circ} \mathrm{C}, 6 \mathrm{~h}, 94 \%$; e) $\mathrm{Hg}(\mathrm{OAc})_{2}$, ethyl vinyl ether, reflux, $24 \mathrm{~h}, 83 \%$; f) sealed tube, $110^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$; g) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 12$ h, 96%.

Treatment of geraniol 2 with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine gave geranyl acetate in 100% yield. SeO_{2} oxidation of the terminal double bond of geranyl acetate produces the alcohol 3 in 64% yield ${ }^{5}$. Treatment of the alcohol $\mathbf{3}$ with VO (acac) $)_{2}$ and t - BuOOH under reflux for 2 h gave the 2,3-epoxy alcohol 4 in 90% yield 6. By our method ${ }^{7}$, allylic alcohol 5 was obtained in 94% yield with $\mathrm{Ph}_{3} \mathrm{P}$, pyridine, I_{2} and $\mathrm{H}_{2} \mathrm{O}$.

By treatment with a large excess of ethyl vinyl ether containing freshly recrystallized mercuric acetate ${ }^{8}$, the allylic alcohol 5 was converted into the corresponding allyl vinyl ether 6 . The allyl vinyl ether 6 was pyrolysed in sealed tube at $110^{\circ} \mathrm{C}$ under Ar for 1 h to obtain the aldehyde 7 in 90% yield ${ }^{9}$. The trans:cis isomer ratio which was determined by GC, was 93:7. Treatment of the aldehyde function group and cleavage of the acetate provides the pheromone 1 in 96% yield. The spectroscopic properties of this material are fully consistent with its assigned structure ${ }^{10}$.

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Grant No. 29672015)

References and Notes

J. Meinwald, Y. C. Menwald, and P. H. Mazzocchi, Science, 1969, 164, 1174.
D. H. Miles, D. Loew, W. S. Johnson, A. F. Kluge, and J. Meinwald, Tetrehedron Lett., 1978, (30), 3019.
J. A. Katzenellenbogen, and K. J. Christy, J. Org. Chem., 1974, 39 (23), 3315.
Y. Masaki, K. Sakuma, and K. Kaji, Chem. Pharm. Bull., 1985, 33 (5), 1930.
M. Unbriet, and K. B. Sharpless, J. Am. Chem. Soc., 1977, 99, 5526.
K. B. Sharpless, and R. C. Michaelson, J. Am. Chem. Soc. 1973, 95, 6136.
Z. S. Liu, J. Lan, and Y. L. Li, Tetrahedron: Asymmetry, 1998, 9 (21), 3755.
A. W. Burgstahlen, I. C. Nordin, J. Am. Chem. Soc., 1961, 83, 198.
9. D. J. Faulker, and M. R. Petersen, Tetrahedron Lett.., 1969, (38), 3243.
10. spectral data:

Compound 1: IR: 3328, 2933, 2871, 1668, 1057,1006, $920 \mathrm{~cm}^{-1}$. EIMS $(\mathrm{m} / \mathrm{z}): 199(0.05 \%$, M+1), 183 ($0.15, \mathrm{M}-15$), 180 ($0.2, \mathrm{M}-18$), 167 (1), 149 (1), 121 (6), 95 (100Z), 85 (33), 67 (97), 55 (58), 43 (30), 41 (93). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad \delta(\mathrm{ppm}) 5.39(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=), 5.15(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.13\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.61(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 2.54 (brs, $2 \mathrm{H}, 2 \mathrm{OH}$), 2.18-2.12 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.09-2.04 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.70-1.63 (m, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Received 29 December 1998

